
�� �� �� �� ��

Revision 1. 9, Sunday , March 12, 1995

�������	��
��� ����� � �� ����
���
����

ii FLX User’s Guide

Feedback

The author would appreciate any comments, criticisms, or bug reports. Please note that this is an
unsupported program, and any bug fixes or enhancements will be done strictly on a “time available” basis.
Send feedback to:

Paul Koning
7 Oak Drive
Wilton, NH 03086
pkoning@chipcom.com

Change bars indicate changes since the last published revision (1.3).

Credits

This program is dedicated to the memory of Simon S. Szeto, RSTS friend extraordinary.

Thanks to Fred Knight of Digital Equipment Corporation for providing the original inspiration
(RSTSFLX for VMS); to DJ Delorie for his DOS version of GNU C; to John Wilson of RPI for Ersatz-11,
PDP-11 simulator for the PC; and to Bob Supnik of Digital Equipment Corporation for his help in making
FLX generally available.

Version 1.6 iii

1. INTRODUCTION 1

1.1 NEW FEATURES 1
1.2 COMMAND LINE FORMAT 1
1.3 FILE SPECIFICATIONS 1
1.4 CONTAINER FILES 2

2. COMMANDS 2

2.1 COMMAND SY NONYMS 3

3. SWITCHES 3

4. SOME EXAMPLES 5

5. MORE DETAILS ON CERTAIN COMMANDS: 5

5.1 GET 5
5.1.1 TREE TRANSFER MODE 6

5.2 PUT 6
5.2.1 TREE TRANSFER MODE 6

5.3 CONTAINER FILES AND R EAL DISKS 7
5.3.1 REAL DISK ACCESS 7
5.3.2 REAL DISK ACCESS IN DOS 7
5.3.3 REAL DISK ACCESS WITH OTHER OPERATING SYSTEMS 8

5.4 INITIALIZING A DISK 8
5.4.1 THE -MERGE SWITCH 8

6. WHAT’S ON THE KIT 9

7. FUTURES 9

iv FLX User’s Guide

Tables

TABLE 1: COMMANDS 2
TABLE 2: COMMAND SYNONYMS 3
TABLE 3: SWITCHES 4
TABLE 4: FUTURE COMMANDS 9
TABLE 5: FUTURE SWITCHES 9

1

1. Introduction
FLX is a program (written in C) that lets Unix or DOS systems read and write RSTS disks, or container files that
contain disk data. It supports any size disk that RSTS supports (including “large” disks, those with device cluster
size greater than 16), and any size file.

1.1 New features
The following features were added or changed since the last released version (V1.3):

• New commands:

◊ compress—zero unused clusters

◊ disk—set default container file name

• New switches:

◊ -confirm or -query—ask about copying/deleting/etc. each file

◊ -hex—hexadecimal output in dump command

◊ -user—create “user” account in mkdir command

◊ -merge—specify merge data for initialize command

• Changed commands and switches:

◊ -clustersize now also works in mkdir to select the account clustersize

◊ -create (in initialize command) accepts any disk type name to specify container size

• get and type commands read any RMS sequential file format in ascii mode

• PPN shorthand character $! % & now accepted in filespecs, as well as () for PPN brackets

• Absolute disk I/O available under DOS

• PDP-11 format RX50 access available under DOS

1.2 Command line format
The FLX command line has the following general form:

command [switches... | files...]

The command may be given as part of invoking the program (i.e., “flx” followed by the command line). In that
case, the command line is executed and FLX exits. If no command is given, FLX prompts for a command,
executes it, and prompts for another. Switches and file name arguments may be mixed in any order; unlike many
Unix commands, there is no requirement to put the switches before the file names. However, if a switch has an
argument, the argument must follow immediately after the switch.

Commands and switches may be abbreviated to the shortest unambiguous abbreviation. They are case sensitive,
and apart from a few switches are in lower case. There is no notion of “conflicting” switch (as DCL has) where
one switch overrides a preceding switch of opposite meaning. If you include conflicting switches in a command,
typically one will be ignored, but it doesn’t depend on the order. So don’t do that...

1.3 File specifications
Most commands take one or more filespecs as arguments. These may be wildcarded. Beware of shell wildcard
expansion; that generally isn’t what you want. So if you use wildcards, you’ll usually need to quote the filenames,
or to let FLX prompt you for the command line. (When FLX prompts, shell wildcard expansion is not done.)

2 FLX User’s Guide

However, with the “put” command the input filespecs are filespecs in the host system, not on the RSTS disk, and in
that case you generally do want to let the shell do wildcard expansion for you.

RSTS filespecs accepted by FLX generally conform to normal RSTS rules, with a few limitations and additions.
The allowed field are PPN, name, extension, protection (in that order). As is normal in RSTS, name and extension
are not case sensitive.

PPN can be a normal RSTS PPN spec [proj,prog] or (proj,prog) or—to avoid some shell quoting—a Unix style
spec /proj/prog/. If no other fields follow, the trailing / may be omitted. Note that the PPN must come first (you
cannot put it at the end of the filename). PPN shorthands $! % & are accepted; # and @ are not since they have
no obvious meaning when you’re not logged in to a RSTS account. For most commands, the default PPN is [1,2].

Unless otherwise stated below, the file name may not be null (but the extension may be). As in recent RSTS
releases, trailing ? characters in name or extension may be replaced by a *. So “a?????” and “a*” are
equivalent.

1.4 Container files
The RSTS disk or container file is specified in one of three ways:

1. If the -disk switch is present, the argument of that switch is the disk filespec.

2. Otherwise, if a default disk has been set with the disk command, that name is used.

3. Otherwise, if environment variable RSTSDISK is defined, its value is the disk filespec.

4. Otherwise, container file “rsts.dsk” in the current directory is used.

FLX uses read-only access to the disk or container file if the command only does reading (e.g., get, list), and
requires read/write access only for commands that modify the disk.

Protection code is <prot> as usual.

2. Commands
The table below lists all the commands.

Table 1: Commands

allocation Display disk block allocation information. The first and last pack cluster and the size of each
free area is displayed, as well as summary data giving amount free, amount used, and size of
largest free contiguous area. If -brief is specified, only the summary data is shown.

delete Delete RSTS files.
compress Prepare the RSTS disk or container file for compression, by zeroing out all unused clusters.

Normally unused clusters contain whatever data was left in them, which makes file
compression less effective.

disk Set the default RSTS disk or container name. If no argument is given, the default is cleared.
Otherwise, it is set to the supplied value. The argument is interpreted in the same way as the
-d switch. A second argument, if supplied, specifies the disk size for real disks, in the same
way as the -Size switch. The default set with the disk command applies for all subsequent
commands unless overridden by a -d or -S switch.

dump Display an octal and ASCII dump (and, if -wide is specified, RAD50) of a file. If a PPN is
given but the name is not, the UFD is dumped. If neither is given, you get an NFS dump of
the disk. (Note that currently you cannot get a file structured dump of MFD or GFD.)

exit Quit FLX (useful when it’s in prompting mode).

Version 1.6 3

get Copy files from RSTS disk to your host system. The last argument is an output filespec. It
may be a directory name, in which case you get a lot of separate output files, each consisting of
the directory name plus the input filename. If -tree was specified, each file ends up in a
host system directory underneath the one you specified, whose name is derived from the RSTS
directory it came from. If the output is not a directory name, you get a single output file,
containing the concatenation of all the input data. An input filespec consisting only of a PPN
will cause the UFD to be copied. (To copy all files in a directory, specify *.* as the
filename.)

hook Write the boot block. First argument is the device type (default DL), case insensitive. Second
argument is the file to hook (default [0,1]init.sys). Third argument is the file from
which to read the bootstrap code (default whatever argument 2 is). All arguments are optional.

identify Display summary information about the disk, such as pack label, flags, and size.
initialize Initialize the disk as an RSTS file structured disk. The pack ID is the first argument; the

second argument, if present, supplies the RDS level desired. Default is RDS 1.2. The MFD,
[0,*] GFD, and [0,1] UFD are allocated with a clustersize of 16.

list Show a directory listing. Default PPN is [*,*]. Default file name and extension are *.
mkdir Create a directory. The PPN specified must not be wild. By default a no-user account is

created, but the -user switch can be used to create a user account. A user account created
this way has no privileges and requires no password to log in.

protect Change the protection code on RSTS files, or set/clear the P (no-delete) flag.
put Copy files from the host system to the RSTS disk. The last argument is a RSTS filespec.

Default name and extension are *. The PPN must not be wild unless -tree is specified.
With -tree, the output RSTS directory is derived from the last directory name in the input
filespec, which must be numeric. The input filespecs are host system filespecs. Existing files
are replaced by new files unless -protect is specified.

rename Rename RSTS files. The new name is given as the output filespec. A PPN is not permitted.
The default name and extension are *. Multiple input specs are allowed, and all are renamed
according to the output spec.

rmdir Delete a directory (account, user or non-user). The directory must be empty. Wild PPN is
allowed.

rts Set the RTS name attribute on RSTS files. The RTS name is the last argument.
type Type one or more files.

2.1 Command synonyms
A number of commands have synonyms, often because the comparable command in RSTS has synonyms. The
table below lists them.

Table 2: Command synonyms

list, directory, ls
type, cat
exit, quit, bye
delete, rm
rts, runtime
rename, mv, move
initialize, dskint

3. Switches
Many switches apply only to some commands, but they are recognized at all times. If you use a switch on a
command where it does not apply, it has no effect. The table below lists all the switches.

4 FLX User’s Guide

Table 3: Switches

-ascii Force line oriented transfer mode in get and put.
-binary Force block mode transfer in get and put.
-brief Brief directory listing (name.ext only, 5 across).
-clustersize Output file clustersize in put, UFD clustersize in mkdir, and pack clustersize in

initialize. May be negative for put and mkdir, in which case pack clustersize is
used if supplied value is smaller.

-confirm Ask about copying, deleting, renaming, etc., each file in commands that do file
operations. This command applies to all operations that can act on multiple files,
except for the list command.

-contiguous Make the file contiguous in put.
-create Create the container file as part of initialize. The argument is the container size; it

may be a numeric argument or the name of a disk type (for example RP04). Disk type
names are case-insensitive. All blocks in the created container file are zeroed.

-disk Argument is the filename of the RSTS disk or container file. Valid with all commands.
This switch specifies the disk or container file name for the command on which it is
used only.

-Debug Print various debug information while executing the command. Valid with all
commands

-end Specifies last block number (0-based) in dump. If the argument has a leading 0, it is
octal; otherwise it is decimal. If this switch is omitted, the dump ends on the last block.

-filesize Meaningfule only if -contiguous is specified; forces the output file in put to be that
size. (If omitted and -contiguous is specified, the file is pre-extended to the same size as
the input file.)

-full Full directory listing (includes file attributes) for list.
-hex Display data in hex rather than octal in dump command.
-image Same as -binary.
-long Same as -full.
-merge Specifies merge data file in initialize command. See details below.
-oattributes Display RMS attributes in octal in list.
-protect Set P flag in protect command. In the put command, prevents existing files from

being superseded by input files.
-query Same as -confirm.
-replace Let rename supersede an existing file, if the new name already exists.
-size Same as -filesize
-Size Specifies disk size, for real disk access in cases where the operating system does not

make the size available to the program (e.g., Unix). Normally used along with a -
disk switch specifying the disk name.

-start Specifies first block number (0-base) in dump. If the argument has a leading 0, it is
octal; otherwise it is decimal. If this switch is omitted, the dump starts at block 0.

-tree Copy directory trees (see below).
-unprotect Clear P flag in protect.
-user Create a user account (with no password required and unlimited disk and job quota) in

mkdir.
-wide Do wide dump (include RAD50) in dump.
-Write Override normal write protection: allows writing on disk initialized as read-only, and

allows deleting and modifying files that are write-protected (e.g., protection code <62>).
Does not override the protection provided by the P (no-delete) flag.

-1column Brief directory listing (name.ext only), one file name per line.

Version 1.6 5

4. Some examples
get -v [0,1]*.rts [1,2]*.sav .

Copy all .RTS files from [0,1] and all .SAV files from [1,2], and put them in the current host system
directory. The resulting file names match those of the input files.

put /usr/bin/ls [1,2]*.sav

Copy ls to [1,2]LS.SAV. Since the extension is .SAV, the RTS name is set to RT11, and the runnable bit
set in the protection code. (This is obviously a rather silly example...)

rename [0,1]*.tmp [1,2]*.sav *.foo

Rename all .TMP files in [0,1] and all .SAV files in [1,2], changing their extension to .FOO. (Note that,
while no PPN may be specified on the new filename, the inputs may be in several different directories, or
indeed have wildcard directory specs.)

5. More details on certain commands:

5.1 Get
The get command can either concatenate files, or produce multiple output files. It concatenates if a single
filespec is given as the output spec, and produces separate outputs if a directory spec is used.

The file transfer mode depends on whether concatenation is being done, on switches, and on the RMS attributes of
the input files.

If concatenation is done, line mode transfer is done unless -binary is specified. (Note that the case of a single
input file spec, without wildcards, to a single output filespec, is not considered concatenation. However, if any
wildcards are present, that is concatenation even if only one file ends up matching the wildcard spec.)

If individual transfer is done, the transfer can be forced to line mode with -ascii, or to binary (block) mode with
-binary. Otherwise, the properties of the input file control how that particular file is transferred:

• No RMS attributes (RSTS native format):

◊ Text file—line mode

◊ Others—block mode

• Copying a directory - block mode

• RMS sequential format:

◊ Fixed length records, with recordsize a multiple of 512—block mode

◊ Otherwise line mode

• Other RMS organizations—block mode

Line mode transfer works for RMS sequential files of any record format, and for “native RSTS” text files (files
with no attributes).

A “text file” is one whose extension indicates it contains text, as opposed to binary data. The extensions that are
considered “text” are:

txt lst map sid log lis rno doc mem bas b2s mac for ftn fth cbl
dbl com cmd bat tec ctl odl ps c h

6 FLX User’s Guide

In line mode, an input file with no attributes is interpreted as a RSTS stream file, with cr/lf line delimiters. Lone
line feeds without preceding carriage return are also treated as delimiters. In any case, the lines are written to the
output file using standard Unix line delimiters (“newline”). (Under DOS, these are then translated to normal DOS
line delimiters by the C I/O library, so you will get a normal DOS text file.) Any trailing nulls in the file are
ignored.

In block mode, the input file is read block by block, and is copied exactly as is to the output file in binary mode. In
this case, the output file size will be a multiple of 512 bytes.

5.1.1 Tree transfer mode
If -tree is specified, the input directory name is made part of the output spec (this is meaningful only when doing
individual transfer and the output spec is a directory spec). The PPN is converted to a 6-digit string and that
directory name and the filename are appended to the output spec. If necessary, the directory is created. So the
command

get -tree [1,2]*.sav .

would create (for example) a file ./001002/pip.sav .

5.2 Put
The put command does transfer mode selection similar to get, but since there are no attributes on the input files,
the rules are simpler:

The transfer can be forced to line mode with -ascii, or to binary (block) mode with -binary. Otherwise, the
properties of the input file control how that particular file is transferred:

• Text file—line mode

• Others—block mode

In line mode, the input file is read line by line. At each line ending, a standard RSTS line delimiter (cr/lf) is
inserted. Normally, the input file has “newline” characters (line feed) at end of line, per Unix convention. If the
input file has cr/lf pairs at end of line—for example, if it was a RSTS text file copied in block mode from
somewhere—then the cr/lf is kept as the line end; no additional cr is inserted in that case.

In block mode, the file is read in binary mode, and is written exactly as is to the output RSTS file. If the input file
size is not a multiple of 512 bytes, the last block is filled with zero bytes (nulls) before being written.

The output file protection can be specified explicitly. If it isn’t, it defaults to 60 for non-executable files, 124 for
executable files. Executable files are recognized by their extension (checked against the runnable extensions of the
runtime systems I know of). An executable file will always have its RTS name set. The executable bit in the
protection is turned on only if the protection was defaulted.

Large files (those of size greater than 65535) have the RTS name cleared, and the executable bit in the protection
code is forced off unconditionally, in accordance with standard RSTS rules.

5.2.1 Tree transfer mode
If -tree is specified, the output PPN is normally wild. The input file spec is then used to construct not just the
output file name but the output PPN as well. The last directory name in the path is expected to be a numeric
string. If the output spec is of the form [x,*] then the numeric (decimal) value of the directory name is taken as the
programmer number. If the output spec is [*, x] or [*,*] then the directory name must be at least 4 digits; the low
order 3 digits are the programmer number and the high order digits the project number. (In the case of [*, x] the
programmer number is then ignored.) Examples:

put -tree 10/foo [2,*] produces [2,10]foo.

Version 1.6 7

put -tree 10/foo [*,*] is an error (too few digits)
put -tree 4010/foo [*,*] produces [4,10]foo.
put -tree 4010/foo [*.2] produces [4,2]foo.
put -tree bar/foo [2,*] is an error (directory not numeric)

If necessary, the output directory is created as part of the copy.

5.3 Container files and real disks
When manipulating RSTS files for use with a PDP-11 simulator, container files are most often used. These are
simply files, as far as the host OS is concerned, but in FLX and in the simulator they are treated as a disk that has a
RSTS file structure on it. The size of the container file is the size of the disk. Container files can be created as
part of the initialize command by using the -create switch. The argument can be either the desired size in
blocks, or the name of a disk model (e.g., rl01 or rk07).

5.3.1 Real disk access
FLX is also able to access a real disk, if the host OS supports this. For example, under Unix you can specify a disk
name of /dev/rxxx, and flx will access that device. Note that you must specify the raw device.

WARNING!

The real disk access supports both read and write access. FLX will quite happily write on whatever you point it to,
if it looks enough like a RSTS file structure (or if you tell it to create one using the initialize command). Be
careful.

5.3.1.1 Size of real disks
Unfortunately, there is no standard way for a program to find out the size of a real disk. There isn’t even a
common approach that works for more than one Unix. So much for portability!

Therefore, when you tell FLX to access a real disk, you may need to specify the size as well, if for your OS FLX
cannot tell. This is done by specifying the size explicitly, either numerically (in blocks) or by a disk model name,
exactly as in the -create switch. The size can be supplied using the -Size switch (note upper case S), the
second argument of the disk command, or the environment variable RSTSDISKSIZE. For example:

dir -d /dev/rrz0g -Size 10240 [1,2]

5.3.2 Real disk access in DOS
There is some special case handling built into FLX for real disk access under DOS under DJGPP. Unlike Unix, it
is not necessary to specify the size as described above.

With DOS, you would specify the name of a disk (for example A:). If that is a hard disk, FLX will use absolute
DOS I/O to that disk or partition. The size is taken from what DOS reports, which seems to be close but not
necessarily exactly right, so you may need to specify the actual size. (An explicitly supplied size will override what
FLX obtains from the OS.) If you specify the name of a floppy disk, as in the example above, then FLX will do its
I/O using straight BIOS calls. In that case, the size it gets from the BIOS should be accurate and you don’t need to
override it.

5.3.2.1 RX50 access
With DOS, if you access a 5.25” floppy disk (using a 1.2 MB drive, i.e., high density 5.25” drive), FLX assumes
this is a PDP-11 format (RX50 format) floppy rather than a standard IBM-format floppy disk, and it adjusts the

8 FLX User’s Guide

BIOS disk I/O parameters accordingly. So you wil l be able to use RX50 floppies directly (and you will not be able
to use regular IBM format 5.25” floppies). RX50 floppies are 400k, single sided, 10 sectors per track, 80 tracks.
All sectors are interleaved 2:1. FLX takes care of all this automatically.

5.3.2.2 A note on compilers for DOS
While FLX is generally portable, and should compile with any reasonable C compiler, that is not the case for the
DOS specific direct disk access code. This code, which is in module djabsio.c, is written specifically for the
low level DOS support features in the DJGPP port of the GNU C compiler (V1.2 or thereabouts). It should not be
hard to port to other compilers that give you some sort of access to DOS and BIOS int calls, but it certainly won’t
compile without change. There is also a module borabsio.c, which will compile under the Borland Turbo C++
compiler, but it doesn’t currently support any direct disk access since none appears to be available in the Windows
version of TC++ (which is what I have).

5.3.3 Real disk access with other operating systems
The real disk access works with Unix because you can do normal I/O calls to raw devices, and with DOS because
there is specific code in place to handle that case. Other operating systems are not explicitly covered. Any OS that
lets you specify a device name in a file open call and then do normal read and write to it will allow direct disk
access. (RSTS is such an OS; I suppose you could compile FLX under RSTS, though that would be quite a strange
thing to do! Maybe if you needed read/write access to RDS 0.0 disks...) However, an OS in which direct disk
access requires the use of special OS services will require changes to FLX. VMS is an example: it would require
the use of $assign and $qiow rather than fopen() and read() to do real disk I/O. Anyone interested in this
should create a new module that contains the appropriate routines. Use unxabsio.c as a template. The module
should be compiled to object file absio.o, which is then linked into FLX. Please feed such changes back to the
author for inclusion in later updates.

5.4 Initializing a disk
This section discusses in more details the steps needed to initialize a file system, in particular a bootable one.

1. The first step is to use the initialize command. If you need a new container file, use the -create
switch to create it. The argument to that switch specifies the disk type (which implies the size) or it can be an
explicit size in blocks. The result is a non-bootable disk with the minimal RSTS file structure on it.

2. Next, create any required directories. For a bootable disk, you will as a minimum need to create [1,2], and it
must be a “user” account. The -user switch is used for this. You will probably need to specify the
clustersize, otherwise the default (pack cluster size) is used. It’s usually a good idea to select a clustersize of
16 (the maximum) for [1,2] since it has to have a lot of files in it. (Note that [0,1], which is created by the
initialize command, is always given a clustersize of 16 for that reason.)

3. Now copy over any other files you need. In particular, for a bootable disk you will need a number of files in
[0,1], such as INIT.SYS, DCL.RTS, ERR.ERR, a monitor SIL, and BACKUP.TSK.

4. Once INIT.SYS is in place, you can make the new disk bootable by using the hook command.

5.4.1 The -merge switch
This switch serves a rather specialized but useful purpose. Suppose you want to create a disk that has a RSTS file
system on it but also some other file system. If that other file system does not need to use the first few blocks of the
disk (used by the RSTS boot block and pack label) then this can be done. An example is the CDROM file system,
defined by ISO 9660 (provided the pack cluster size is small enough; a value of 64 will not work).

To create such a hybrid disk, first create the non-RSTS file system in a container file. Make this file no bigger
than necessary, since the space it takes will not be available to RSTS.

Version 1.6 9

Next, initialize the RSTS disk as usual, but include the -merge switch with the non-RSTS container file’s name
as argument. FLX will copy that file into the RSTS container file, starting at block 0, replacing the data in block 0
and the pack label block with the corresponding RSTS data. Any data beyond the pack label cluster is allocated to
file [0,1]merge.sys. Note that the size of that file will not match the container file size, since neither the boot
block’s device cluster nor the pack label’s pack cluster are included in the size. (The size for merge.sys is the
merge data size - DCS - PCS. If that is <= 0, merge.sys is not created.)

If the boot block or pack label block in the merge file contain non-zero data, you will get a warning message from
FLX to report this, but the initialization will proceed. It is up to you to verify whether this is in fact a problem.

6. What’ s on the kit
The FLX kit contains:

• Source (.C) and header (.H) files for FLX. In the ZIP format kit, these have DOS line endings; in the tar
file, they have Unix line endings. Apart from that, they are the same. As noted above, there are several source
files with direct disk I/O routines, all named xxxabsio.c where xxx indicates the platform. Use the one that
matches your platform, or pick one to use as a starting point for creating your own if needed.

• A Makefile, to build FLX under DOS (with GNU GCC, or probably with any other reasonable C compiler).
This file may need minor changes; read the notes in the file for details. File makefile.unx has been edited
for use under Unix, or at least should require minimal further change. For other environments, read the
comments in either makefile for guidance on what to change.

• FLX.EXE, a DOS executable file. This file was built with DJ Delorie’s GCC package, but it does not depend
on having that installed.

• FLX.DOC, the source file for this document (Microsoft Word format), FLX.PS, a printable version of same,
and FLX.TXT, a plaintext version.

Note that FLX does not work on Big Endian systems (like Sun or Apple machines). You can build it, but when
you run it, you’ll get an error message indicating that you’re on the wrong kind of system.

FLX should work properly on systems with either a 16-bit or a 32-bit “ int”. (It does require that “short int” is 16
bits, and that “long” is 32 bits, so DEC Alpha users may run into problems.) Most testing has been done with 32
bit int.

7. Futures
Several features are on the list for consideration in the future. Feedback would be appreciated on these or other
candidates (but no promise is implied that any of this will be done, or that there will be a future release).

Table 4: Future commands

rebuild Rebuild (a.k.a., clean), comparable to the ONLCLN utility or Refresh Rebuild feature in RSTS
INIT.

Table 5: Future switches

-r Do RMS variable length record format transfer in put.
-rv Same as -r.
-rf Do RMS fixed record format transfer in put. This switch takes the required record size as

argument.
-rs Do RMS stream record format transfer in put.

10 FLX User’s Guide

Note: there’s already some partial support for these switches. If you use one in a put command with a block mode
transfer, the transfer is done the same way as usual (of course, since it’s block mode) but the file is given RMS
attributes according to the specified switch. This may be useful for cases where a file must have attributes to be
processed correctly, for example a RSTS Backup file.

